Advertisement

Neuropsychology Review

, Volume 17, Issue 3, pp 337–345 | Cite as

The Role of Cognitive Control in Cocaine Dependence

  • Hugh GaravanEmail author
  • Robert Hester
Article
  • 1.5k Downloads

Abstract

While hedonic and reward-related processes are central to drug use and dependence, this article focuses on the contribution that cognitive processes may make to addiction. In particular, attention is drawn to those processes involved in exercising control over behavior as drug dependence is characterized by risky, impulsive behavior. Functional neuroimaging implicates prefrontal deficits in cocaine dependence with an emerging picture of cocaine users having attentional biases towards drug-related stimuli, poor performance in laboratory tests of inhibitory control, and compromised monitoring and evaluation of their behavior. Combined, these deficits may contribute to the continuation of use in dependent individuals and may qualify as important targets for therapeutic interventions.

Keywords

Cocaine Addiction Control Cognition Neuroimaging 

References

  1. American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders (4th ed—text revision). Washington, DC: American Psychiatric Press.
  2. Ardila, A., Rosselli, M., & Strumwasser, S. (1991). Neuropsychological deficits in chronic cocaine abusers. International Journal of Neuroscience, 57(1–2), 73–79.CrossRef
  3. Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115–116.
  4. Beatty, W. W., Katzung, V. M., Moreland, V. J., & Nixon S. J. (1995). Neuropsychological performance of recently abstinent alcoholics and cocaine abusers. Drug and Alcohol Dependence, 37, 247–253.
  5. Bechara, A., Dolan, S., & Hindes, A. (2002). Decision-making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40, 1690–1705.
  6. Berry, J., van Gorp, W. G., Herzberg, D. S., Hinkin, C., Boone, K., Steinman, L. et al. (1993). Neuropsychological deficits in abstinent cocaine abusers: preliminary findings after two weeks of abstinence. Drug and Alcohol Dependence, 32(3), 231–237.
  7. Bjork, J. M., Smith, A. R., Danube, C. L., & Hommer, D. W. (2007). Developmental differences in posterior mesofrontal cortex recruitment by risky rewards. The Journal of Neuroscience, 27(18), 4839–4849.
  8. Bolla, K., Ernst, M., Kiehl, K., Mouratidis, M., Eldreth, D., Contoreggi, C. et al. (2004). Prefrontal cortical dysfunction in abstinent cocaine abusers. Journal of Neuropsychiatry and Clinical Neurosciences, 16(4), 456–464.
  9. Bolla, K. I., Eldreth, D. A., Matochik, J. A., & Cadet, J. L. (2005). Neural substrates of faulty decision-making in abstinent marijuana users. NeuroImage, 26, 480–492.
  10. Botvinick, M. W., Carter, C. S., Braver, T. S., Barch, D. M., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.
  11. Breiter, H. C., Gollub, R. L., Weisskoff, R. M., Kennedy, D. N., Makris, N., Berke, J. D. et al. (1997). Acute effects of cocaine on human brain activity and emotion. Neuron, 19(3), 591–611.
  12. Brown, J. W., & Braver, T. S. (2005) Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307, 1118–1121.
  13. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–222.
  14. Chambers, C. D., Bellgrove, M. A., Stokes, M. G., Henderson, T. R., Garavan, H., Robertson, I. H. et al. (2006). Executive ‘brake failure’ following deactivation of human frontal lobe. Journal of Cognitive Neuroscience, 18, 444–455.
  15. Conrod, P. J., Pihl, R. O., Stewart, S. H., & Dongier, M. (2000). Validation of a system of classifying female substance abusers on the basis of personality and motivational risk factors for substance abuse. Psychology of Addictive Behaviors, 14(3), 243–256.
  16. Cowan, N. (2001). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory (p. 62–101). Cambridge University Press: Cambridge.
  17. Courchesne, E., & Allen, G. (1997). Prediction and preparation, fundamental functions of the cerebellum. Learning Memory, 4, 1–35.
  18. Cox, W. M., Hogan, L. M., Kristian, M. R., and Race, J. H. (2002). Alcohol attentional bias as a predictor of alcohol abusers’ treatment outcome. Drug and Alcohol Dependence, 68, 237–243.
  19. Dackis, C. A., & O'Brien, C. P. (2001). Cocaine dependence: A disease of the brain’s reward centers. Journal of Substance Abuse Treatment, 21(3), 111–117.
  20. Dagenbach, D. & Carr, T. (1994). Inhibitory processes in attention, memory, and language. New York: Academic.
  21. Dalley, J. W., Fryer, T. D., Brichard, L, Robinson, E. S. J., Theobald, D. E. H., Lääne, K. et al. (2007). Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science, 315, 1267–1270.
  22. DeBettignies, B. H., Mahurin, R. K., & Pirozzolo, F. Z. (1990). Insight for impairment in independent living skills in Alzheimer’s disease and multi-infarct dementia. Journal of Clinical and Experimental Neuropsychology, 12(2), 355–363.
  23. Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5, 303–305.
  24. Desmond, J. E., Chen, S. H., DeRosa, E., Pryor, M. R., Pfefferbaum, A., & Sullivan, E. V. (2003). Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. NeuroImage, 19(4), 1510–1520.
  25. Duka, T., & Townshend, J. M. (2004). The priming effect of alcohol pre-load on attentional bias to alcohol-related stimuli. Psychopharmacology (Berl), 176(3–4), 353–361.
  26. Eldreth, D. A., Matochik, J. A., Cadet, J. L., & Bolla, K. I. (2004). Abnormal brain activity in prefrontal brain regions in abstinent marijuana users. NeuroImage, 23(3), 914–920.
  27. Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neuroscience, 8(11), 1481–1489 [erratum in Nat Neurosci. 2006 Jul;9(7):979].
  28. Feldstein, S. W., & Miller, W. R. (2006). Substance use and risk-taking among adolescents. Journal of Mental Health, 15(6), 633–643.
  29. Fillmore, M. T., & Rush, C. R. (2002). Impaired inhibitory control of behavior in chronic cocaine users. Drug and Alcohol Dependence, 66(3), 265–273.
  30. Fillmore, M. T., Rush, C. R., & Hays, L. (2006). Acute effects of cocaine in two models of inhibitory control: Implications of non-linear dose effects. Addiction, 101(9), 1323–1332.
  31. Fishbein, D. H., Eldreth, D. L., Hyde, C., Matochik, J. A., London, E. D., Contoreggi, C. et al. (2005). Risky decision making and the anterior cingulate cortex in abstinent drug abusers and nonusers. Cognitive Brain Research, 23, 119–136.
  32. Forman, S. D., Dougherty, G. G., Casey, B. J., Siegle, G. J., Braver, T. S., Barch, D. M. et al. (2004). Opiate addicts lack error-dependent activation of rostral anterior cingulate. Biological Psychiatry, 55(5), 531–537.
  33. Franken, I. H., Kroon, L. Y., Wiers, R. W., & Jansen, A. (2000). Selective cognitive processing of drug cues in heroin dependence. Journal of Psychopharmacology (Oxf), 14, 395–400.
  34. Franklin, T. R., Acton, P. D., Maldjian, J. A., Gray, J. D., Croft, J. R., Dackis, C. A. et al. (2002). Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biological Psychiatry, 51, 134–142.
  35. Garavan, H. (1998). Serial attention within working memory. Memory & Cognition, 26(2), 263–276.
  36. Garavan, H. & Stout, J. C. (2005). Neurocognitive insights into substance abuse. Trends in Cognitive Sciences, 9, 195–201.
  37. Garavan, H., Ross, T. J., & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: An event-related fMRI study. Proceedings of the National Academy of Sciences, USA, 96(14), 8301–8306.
  38. Garavan, H., Pankiewicz, J., Bloom, A., Cho, J.-K., Sperry, L., Ross, T. J., et al. (2000). Cue-induced cocaine craving: Neuroanatomical specificity for drug users and drug stimuli. American Journal of Psychiatry, 157, 1789–1798.
  39. Garavan, H., Hester, R., Murphy, K., Fassbender, C., & Kelly, C. (2006). Individual differences in the neuroanatomy of inhibitory control. Brain Research, 1105, 130–142.
  40. Gibbs, S. E., & D’Esposito, M. (2005). Individual capacity differences predict working memory performance and prefrontal activity following dopamine receptor stimulation. Cognitive, Affective & Behavioral Neuroscience, 5(2), 212–221.CrossRef
  41. Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry, 159, 1642–1652.
  42. Goldstein, R. Z., Tomasi, D., Alia-Klein, N., Cottone, L. A., Zhang, L., Telang, F., et al. (2007a). Subjective sensitivity to monetary gradients is associated with frontolimbic activation to reward in cocaine abusers. Drug and Alcohol Dependence, 87(2–3), 233–240.
  43. Goldstein, R. Z., Tomasi, D., Rajaram, S., Cottone, L. A., Zhang, L., Maloney, T., et al. (2007b). Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction. Neuroscience, 144, 1153–1159.
  44. Grant, S., London, E. D., Newlin, D. B., Villemagne, V. L., Liu, X., Contoreggi, C., et al. (1996). Activation of memory circuits during cue-elicited cocaine craving. Proceedings of the National Academy of Sciences of the United States of America, 93, 12040–12045.
  45. Grant, S., Contoreggi, C., & London, E. D. (2000). Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia, 38, 1180–1187.
  46. Guzy, L. T., & Axelrod, S. (1972). Interaural attention shifting as response. Journal of Experimental Psychology, 95, 290–294.
  47. Hammer, R. P., Jr., Pires, W. S., Markou, A., & Koob, G. F. (1993). Withdrawal following cocaine self-administration decreases regional cerebral metabolic rate in critical brain reward regions. Synapse, 14(1), 73–80.
  48. Hester, R., & Garavan, H. (2004). Executive dysfunction in cocaine addiction: Evidence for discordant frontal, cingulate and cerebellar activity. The Journal of Neuroscience, 24, 11017–11022.
  49. Hester, R., Fassbender, C. & Garavan, H. (2004a). Individual differences in error processing: A review and meta-analysis of three event-related fMRI studies using the go/no-go task. Cerebral Cortex, 14(9), 966–973.
  50. Hester, R., Murphy, K., & Garavan, H. (2004b). Beyond common resources: the cortical basis for resolving task interference. NeuroImage, 23(1), 202–212.
  51. Hester, R., Dixon, V., & Garavan, H. (2006). The relationship between attentional bias for cocaine-related material and drug-seeking behavior in active cocaine users. Drug & Alcohol Dependence, 81, 251–257.
  52. Hester, R, Simões-Franklin, C., & Garavan, H. (2007). Post-error behavior in active cocaine users: poor awareness of errors in the presence of intact performance adjustments. Neuropsychopharmacology (in press) DOI  10.1038/sj.npp.1301326.
  53. Hoff, A. L., Riordan, H., Morris, L., Cestaro, V., Wieneke, M., Alpert, R. et al. (1996). Effects of crack cocaine on neurocognitive function. Psychiatry Research, 60(2–3), 167–176.
  54. Holman, B. L., Carvalho, P. A,. Mendelson, J., Teoh, S. K., Nardin, R., Hallgring, E. et al. (1991). Brain perfusion is abnormal in cocaine-dependent polydrug users: a study using technetium-99m-HMPAO and ASPECT. Journal of Nuclear Medicine, 32(6), 1206–1210.
  55. Holroyd, C. B., & Coles, M. G. H. (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709.
  56. Hoshi, R., Bisla, J., & Curran, H. V. (2004). The acute and sub-acute effects of ‘ecstasy’ (MDMA) on processing of facial expressions: preliminary findings. Drug and Alcohol Dependence, 76, 297–304.
  57. Hyman, S. E. (2005). Addiction: A disease of learning and memory. American Journal of Psychiatry, 162, 1414–1422.
  58. Johanson, C. E. & Fischman, M. W. (1989). The pharmacology of cocaine related to its abuse. Pharmacology Review, 41(1), 3–52.
  59. Kaufman, J., Ross, T. J., Stein, E. A., & Garavan, H. (2003). Cingulate hypoactivity in cocaine users during a go/no-go task as revealed by event-related fMRI. The Journal of Neuroscience, 23(21), 7839–7843.
  60. Kelly, P. H., & Iversen, S. D. (1976). Selective 6OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. European Journal of Pharmacology, 40(1), 45–56.
  61. Konishi, S., Nakajima, K., Uchida, I., Kikyo, H., Kameyama, M., & Miyashita, Y. (1999). Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain, 122, 981–991.
  62. Kübler, A., Murphy, K., Kaufman, J., Stein, E. A., & Garavan, H. (2003). Co-ordination within and between verbal and visuospatial working memory: Network modulation and anterior frontal recruitment. NeuroImage, 20, 1298–1308.
  63. Kübler, A., Murphy, K., & Garavan, H. (2005). Cocaine dependence and attention switching within and between verbal and visuospatial working memory. European Journal of Neuroscience, 21, 1984–1992.
  64. Lawrence, N. S., Ross, T. J., & Stein, E. A. (2002). Cognitive mechanisms of nicotine on visual attention. Neuron, 36, 539–548.
  65. Lee, T. M. C., Zhou, W., Luo, X., Yuen, K. S. L., Ruane, X., & Weng, X. (2005). Neural activity associated with cognitive regulation in heroin users: A fMRI study. Neuroscience Letters, 382, 211–216.
  66. Li, C. s. R., Milivojevic, V., Kemp, K., Hong, K., & Sinha, R. (2006). Performance monitoring and stop signal inhibition in abstinent patients with cocaine dependence. Drug and Alcohol Dependence, 85(3), 205–212.
  67. Liddle, P. F., Friston, K. J., Frith, C. D., Hirsch, S. R., Jones, T., & Frackowiak, R. S. (1992). Patterns of cerebral blood flow in schizophrenia. British Journal of Psychiatry, 160, 179–186.
  68. Liddle, P. F., Kiehl, K. A., & Smith, A. M. (2001). Event-related fMRI study of response inhibition. Human Brain Mapping, 12(2), 100–109.
  69. Logan G. D., & Cowan W. B. (1984). On the ability to inhibit thought and action: a theory of an act of control. Psychological Review, 91, 295–327.
  70. Lusher, J., Chandler, C., & Ball, D. (2004). Alcohol dependence and the alcohol Stroop paradigm: Evidence and issues. Drug Alcohol Depend, 75, 225–231.
  71. MacDonald, A. W. III, Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835–1838.
  72. Magno, E., Foxe, J. J., Molholm, S., Robertson, I., & Garavan, H. (2006). The anterior cingulate and error avoidance. The Journal of Neuroscience, 26(18), 4769–4773.
  73. Matochik, J. A., London, E. D., Eldreth, D. A., Cadet, J. L. & Bolla, K.I. (2003). Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. Neuroimage, 19, 1095–1102.
  74. Menon, V., Adleman, N. E., White, C. D., Glover, G. H., & Reiss, A. L. (2001). Error-related brain activation during a go/no-go response inhibition task. Human Brain Mapping, 12(3), 131–143.
  75. Mogenson, G. J., Jones, D. L., & Yim, C. Y. (1980). From motivation to action: functional interface between the limbic system and the motor system. Progress in Neurobiology, 14(2–3), 69–97.
  76. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–141.
  77. Mostofsky, S. H., Schafer J. G., Abrams, M. T., Goldberg, M. C., Flower, A. A., Boyce, A., Courtney, S. M., Calhoun, V. D., Kraut, M. A., Denckla, M. B., & Pekar, J. J. (2003). fMRI evidence that the neural basis of response inhibition is task-independent. Cognitive Brain Research, 17, 419–430.
  78. O'Malley, S. S., & Gawin, F. H. (1990). Abstinence symptomatology and neuropsychological impairment in chronic cocaine abusers. NIDA Research Monographs, 101, 179–190.
  79. Ott, B.R., Lafleche, G., Whelihan, W. M., Buongiorno, G. W., Albert, M. S., & Fogel, B. S. (1996). Impaired awareness of deficits in Alzheimer disease. Alzheimer Disease and Associated Disorders, 10(2), 68–76.
  80. Pascual-Leone, A., Dhuna, A., & Anderson, D. C. (1991). Cerebral atrophy in habitual cocaine abusers: A planimetric CT study. Neurology, 41(1), 34–38.
  81. Paulus, M. P., & Lawrence, R. (2006). Anterior cingulate activity modulates nonlinear decision weight function of uncertain prospects. NeuroImage, 30, 668–677.
  82. Paulus, M. P., Tapert, S. F., & Schuckit, M. A. (2005). Neural activation patterns of methamphetamine-dependent subjects during discussion making predict relapse. Archives of General Psychiatry, 62(7), 761–768.
  83. Peralta, V., & Cuesta, M. J., (1998). Lack of insight in mood disorders. Journal of Affective Disorders, 49(1), 55–58.
  84. Pope, H. G, Jr, Gruber, A. J., Hudson, J. I., Huestis, M. A., & Yurgelun-Todd, D. (2001) Neuropsychological performance in long-term cannabis users. Archives of General Psychiatry, 58, 195–909.
  85. Porrino, L. J., Domer, F. R., Crane, A. M., & Sokoloff, L. (1998). Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats. Neuropsychopharmacology, 1(2), 109–118.
  86. Rezvani, A. H., & Levin, E. D. (2001). Cognitive effects of nicotine. Biological Psychiatry, 49, 258–267.
  87. Ridderinkhof, K. R., de Vlugt, Y., Bramlage, A., Spaan, M., Elton, M., Snel, J. et al. (2002). Alcohol consumption impairs detection of performance errors in mediofrontal cortex. Science, 298(5601), 2209–2211.
  88. Ritz, M. C., Cone, E. J., & Kuhar, M. J. (1990). Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: A structure-activity study. Life Sciences, 46(9), 635–645.
  89. Robinson, T. E., & Berridge, K. C. (2003). Addiction. Annual Review of Psychology, 54, 25–53.
  90. Rosselli, M. & Ardila, A. (1996). Cognitive effects of cocaine and polydrug abuse. Journal of Clinical and Experimental Neuropsychology, 18(1), 122–135.
  91. Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage, 20(1), 351–358.
  92. Ryan, F. (2006). Appetite lost and found: Cognitive psychology in the addiction clinic. In M. Munafo & I. Albery (Eds.), Cognition and addiction. Oxford University Press: Oxford.
  93. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.
  94. Solowij, N., Stephens, R., Roffman, R. A., & Babor, T. (2002). Does marijuana use cause long-term cognitive deficits? JAMA, 287(20), 2653–2654.
  95. Stout, J. C., Rock, S. L., Campbell, M. C., Busemeyer, J. R., & Finn, P. R. (2005). Psychological processes underlying risky decisions in drug abusers. Psychology of Addictive Behaviors, 19(2), 148–157.
  96. Strickland, T. L., Mena, I., Villanueva-Meyer, J., Miller, B. L., Cummings, J., Mehringer, C. M. et al. (1993). Cerebral perfusion and neuropsychological consequences of chronic cocaine use. Journal of Neuropsychiatry and Clinical Neurosciences, 5(4), 419–427.
  97. Tarter, R. E., Kirisci, L., Mezzich, A., Cornelius, J. R., Pajer, K., Vanyukov, M. et al. (2003). Neurobehavioral disinhibition in childhood predicts early age at onset of substance use disorder. American Journal of Psychiatry, 160, 1078–1085.
  98. Teasdale, J. D., Moore, R. G., Hayhurst, H., Pope, M., Williams, S., & Segal, Z. V. (2002). Metacognitive awareness and prevention of relapse in depression: empirical evidence. Journal of Consulting and Clinical Psychology, 70(2), 275–287.
  99. Volkow, N. D., Fowler, J. S, Wolf, A. P, Hitzemann, R., Dewey, S., Bendriem, B. et al. (1991). Changes in brain glucose metabolism in cocaine dependence and withdrawal. American Journal of Psychiatry, 148(5), 621–626.
  100. Volkow, N. D., Hitzemann, R., Wang, G. J., Fowler, J. S., Wolf, A. P., Dewey, S. L. et al. (1992). Long-term frontal brain metabolic changes in cocaine abusers. Synapse, 11(3), 184–190.
  101. Volkow, N. D., Fowler, J. S., Wang, G.-J., Hitzemann, R., Logan, J., Schlyer, D. et al. (1993). Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse, 14, 169–177.
  102. Volkow, N. D., Wang, G.-J., Fowler, J. S., Logan, J., Gatley, S. J., Gifford, A. et al. (1999). Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. American Journal of Psychiatry, 156, 1440–1443.
  103. Waters, A. J., Shiffman, S., Sayette, M. A., Paty, J. A., Gwaltney, C. J., & Balabanis, M. H. (2003). Attentional bias predicts outcome in smoking cessation. Health Psychol, 22, 378–387.
  104. Wertz, J. M., & Sayette, M. A. (2001). Effects of smoking opportunity on attentional bias in smokers. Psychology of Addictive Behaviors, 15, 268–271.
  105. Wrase, J. Schlagenhauf, F., Kienast, T., Wustenberg, T., Bermpohl, F., Kahnt, T. et al. (2007). Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. NeuroImage, 35(2), 787–794.
  106. Yucel, M., & Lubman, D. I. (2007). Neurocognitive and neuroimaging evidence of behavioral dysregulation in human drug addiction: implications for diagnosis, treatment and prevention. Drug and Alcohol Review, 26, 33–39.

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Psychology and Trinity College Institute of NeuroscienceTrinity College DublinDublin 2Ireland
  2. 2.Trinity College Institute of NeuroscienceDublin 2Ireland
  3. 3.Queensland Brain Institute and School of PsychologyUniversity of QueenslandSt LuciaAustralia

Personalised recommendations

www.medicaments-24.com/shop/town-reims/viagra-sildenafil/

steroidsshop-ua.com

https://steroidsshop-ua.com