Widgets Magazine- ericyue.info
Research Communications

A hydrogen sulfide-releasing cyclooxygenase inhibitor markedly accelerates recovery from experimental spinal cord injury

    Published Online:ericyue.info/10.1096/fj.13-234716

    Spinal cord trauma causes loss of motor function that is in part due to the ensuing inflammatory response. Hydrogen sulfide (H2S) is a potent, endogenous anti-inflammatory and neuroprotective substance that has been explored for use in the design of novel nonsteroidal anti-inflammatory drugs. In the current study, we evaluated the potential beneficial effects of ATB-346 [2-(6-methoxynapthalen- 2-yl)-propionic acid 4-thiocarbamoyl-phenyl ester], an H2S-releasing derivative of naproxen, in a murine model of spinal cord injury (SCI). SCI was induced in mice by spinal cord compression, produced through the application of vascular clips to the dura via a T5 to T8 laminectomy. ATB-346, naproxen (both at 30 μmol/kg), or vehicle was orally administered to the mice 1 and 6 h after SCI and once daily thereafter for 10 d. Motor function [Basso Mouse Scale (BMS) of locomotion] improved gradually in the mice treated with naproxen. However, those treated with ATB-346 exhibited a significantly more rapid and sustained recovery of motor function, achieving greater than double the increase in locomotion score of the naproxen group by the 10th day of treatment. ATB-346 also significantly reduced the severity of inflammation (proinflammatory cytokines, apoptosis of neural tissue, and nitrosative stress) that characterized the secondary effects of SCI. Again, the effects of ATB-346 were superior to those of naproxen for several parameters. These results showed marked beneficial effects of an H2S-releasing derivative of naproxen in an animal model of SCI, significantly enhancing recovery of motor function, possibly by reducing the secondary inflammation and tissue injury that characterizes this model. The combination of inhibition of cyclooxygenase and delivery of H2S may offer a promising alternative to existing therapies for traumatic injury.—Campolo, M., Esposito, E., Ahmad, A., Di Paola, R., Wallace, J. L., Cuzzocrea, A. Hydrogen sulfide-releasing cyclooxygenase inhibitor markedly accelerates recovery from experimental spinal cord injury.

    REFERENCES

    • 1. Finnerup N. B. , Johannesen I. L. , Sindrup S. H. , Bach F. W. , Jensen T. S. (2001) Pain and dysesthesia in patients with spinal cord injury: a postal survey. Spinal Cord 39, 256–262 Crossref Medline
    • 2. Siddall P. J. , McClelland J. M. , Rutkowski S. B. , Cousins M. J. (2003) A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 103, 249–257 Crossref Medline
    • 3. Bareyre F. M. , Schwab M. E. (2003) Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci. 26, 555–563 Crossref Medline
    • 4. DeWitt D. S. , Prough D. S. , Taylor C. L. , Whitley J. M. (1992) Reduced cerebral blood flow, oxygen delivery, and electroencephalographic activity after traumatic brain injury and mild hemorrhage in cats. J. Neurosurg. 76, 812–821 Crossref Medline
    • 5. Kruman I. I. , Mattson M. P. (1999) Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J. Neurochem. 72, 529–540 Crossref Medline
    • 6. Pedersen M. O. , Jensen R. , Pedersen D. S. , Skjolding A. D. , Hempel C. , Maretty L. , Penkowa M. (2009) Metallothionein-I+II in neuroprotection. Biofactors 35, 315–325 Crossref Medline
    • 7. Takahashi H. , Manaka S. , Sano K. (1981) Changes in extracellular potassium concentration in cortex and brain stem during the acute phase of experimental closed head injury. J. Neurosurg. 55, 708–717 Crossref Medline
    • 8. Yamakami I. , McIntosh T. K. (1989) Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres. J. Cereb. Blood Flow Metab. 9, 117–124 Crossref Medline
    • 9. Zemper E. D. (1994) Analysis of cerebral concussion frequency with the most commonly used models of football helmets. J. Athletic Training 29, 44–50 Medline
    • 10. Yip P. K. , Malaspina A. (2012) Spinal cord trauma and the molecular point of no return. Mol. Neurodegen. 7, 6 Crossref Medline
    • 11. Malaspina A. , Jokic N. , Huang W. L. , Priestley J. V. (2008) Comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the G93A SOD1 gene mutation and by mechanical compression. BMC Genom. 9, 500 Crossref Medline
    • 12. Aimone J. B. , Leasure J. L. , Perreau V. M. , Thallmair M. (2004) Spatial and temporal gene expression profiling of the contused rat spinal cord. Exp. Neurol. 189, 204–221 Crossref Medline
    • 13. Carmel J. B. , Galante A. , Soteropoulos P. , Tolias P. , Recce M. , Young W. , Hart R. P. (2001) Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiol. Genom. 7, 201–213 Crossref Medline
    • 14. Resnick D. K. , Schmitt C. , Miranpuri G. S. , Dhodda V. K. , Isaacson J. , Vemuganti R. (2004) Molecular evidence of repair and plasticity following spinal cord injury. Neuroreport 15, 837–839 Crossref Medline
    • 15. Schmitt C. , Miranpuri G. S. , Dhodda V. K. , Isaacson J. , Vemuganti R. , Resnick D. K. (2006) Changes in spinal cord injury-induced gene expression in rat are strain-dependent. Spine J. 6, 113–119 Crossref Medline
    • 16. Lin H. , Schlaepfer W. W. (2006) Role of neurofilament aggregation in motor neuron disease. Ann. Neurol. 60, 399–406 Crossref Medline
    • 17. Mor-Vaknin N. , Punturieri A. , Sitwala K. , Markovitz D. M. (2003) Vimentin is secreted by activated macrophages. Nat. Cell Biol. 5, 59–63 Crossref Medline
    • 18. Fiorucci S. , Antonelli E. , Distrutti E. , Rizzo G. , Mencarelli A. , Orlandi S. , Zanardo R. , Renga B. , Di Sante M. , Morelli A. , Cirino G. , Wallace J. L. (2005) Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology 129, 1210–1224 Crossref Medline
    • 19. Wallace J. L. , Caliendo G. , Santagada V. , Cirino G. , Fiorucci S. (2007) Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology 132, 261–271 Crossref Medline
    • 20. Wallace J. L. , Dicay M. , McKnight W. , Martin G. R. (2007) Hydrogen sulfide enhances ulcer healing in rats. FASEB J. 21, 4070–4076
    • 21. Zanardo R. C. , Brancaleone V. , Distrutti E. , Fiorucci S. , Cirino G. , Wallace J. L. (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 20, 2118–2120
    • 22. Li L. , Bhatia M. , Zhu Y. Z. , Zhu Y. C. , Ramnath R. D. , Wang Z. J. , Anuar F. B. , Whiteman M. , Salto-Tellez M. , Moore P. K. (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J. 19, 1196–1198
    • 23. Fiorucci S. , Orlandi S. , Mencarelli A. , Caliendo G. , Santagada V. , Distrutti E. , Santucci L. , Cirino G. , Wallace J. L. (2007) Enhanced activity of a hydrogen sulphide-releasing derivative of mesalamine (ATB-429) in a mouse mode of colitis. Br. J. Pharmacol. 150, 996–1002 Crossref Medline
    • 24. Wallace J. L. (2007) Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol. Sci. 28, 501–505 Crossref Medline
    • 25. Abe K. , Kimura H. (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066–1071 Crossref Medline
    • 26. Geng B. , Yang J. , Qi Y. , Zhao J. , Pang Y. , Du J. , Tang C. (2004) H2S generated by heart in rat and its effects on cardiac function. Biochem. Biophys. Res. Commun. 313, 362–368 Crossref Medline
    • 27. Zhao W. , Zhang J. , Lu Y. , Wang R. (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous K(ATP) channel opener. EMBO J. 20, 6008–6016 Crossref Medline
    • 28. Kimura H. (2005) Hydrogen sulfide as a biological mediator. Antioxid. Redox Signal. 7, 778–780 Crossref Medline
    • 29. Kimura H. , Shibuya N. , Kimura Y. (2012) Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid. Redox Signal. 17, 45–57 Crossref Medline
    • 30. Gong Q. H. , Wang Q. , Pan L. L. , Liu X. H. , Huang H. , Zhu Y. Z. (2010) Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats. Pharmacol. Biochem. Behav. 96, 52–58 Crossref Medline
    • 31. Chu Q. J. , He L. , Zhang W. , Liu C. L. , Ai Y. Q. , Zhang Q. (2013) Hydrogen sulfide attenuates surgical trauma-induced inflammatory response and cognitive deficits in mice. J. Surg. Res. 183, 330–336 Crossref Medline
    • 32. Tan B. H. , Wong P. T. , Bian J. S. (2010) Hydrogen sulfide: a novel signaling molecule in the central nervous system. Neurochem. Int. 56, 3–10 Crossref Medline
    • 33. Wallace J. L. , Caliendo G. , Santagada V. , Cirino G. (2010) Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). Br. J. Pharmacol. 159, 1236–1246 Crossref Medline
    • 34. Kearney P. M. , Baigent C. , Godwin J. , Halls H. , Emberson J. R. , Patrono C. (2006) Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis?—meta-analysis of randomised trials. BMJ 332, 1302–1308 Crossref Medline
    • 35. Genovese T. , Esposito E. , Mazzon E. , Di Paola R. , Muia C. , Meli R. , Bramanti P. , Cuzzocrea S. (2008) Effect of cyclopentanone prostaglandin 15-deoxy-delta12,14PGJ2 on early functional recovery from experimental spinal cord injury. Shock 30, 142–152 Medline
    • 36. Scott G. S. , Cuzzocrea S. , Genovese T. , Hooper D. C. (2005) Uric acid protects against secondary damage after spinal cord injury. Proc. Natl. Acad. Sci. U. S. A. 102, 3483–3488 Crossref Medline
    • 37. Blackler R. , Syer S. , Bolla M. , Ongini E. , Wallace J. L. (2012) Gastrointestinal-sparing effects of novel NSAIDs in rats with compromised mucosal defence. PLoS One 7, e35196 Crossref Medline
    • 38. Basso D. M. , Fisher L. C. , Anderson A. J. , Jakeman L. B. , McTigue D. M. , Popovich P. G. (2006) Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J. Neurotrauma 23, 635–659 Crossref Medline
    • 39. Boughton-Smith N. K. , Wallace J. L. , Whittle B. J. R. (1988) Relationship between arachidonic acid metabolism, myeloperoxidase activity and leukocyte infiltration in a rat model of inflammatory bowel disease. Agents Actions 25, 115–123 Crossref Medline
    • 40. Bethea J. R. , Castro M. , Keane R. W. , Lee T. T. , Dietrich W. D. , Yezierski R. P. (1998) Traumatic spinal cord injury induces nuclear factor-kappaB activation. J. Neurosci. 18, 3251–3260 Crossref Medline
    • 41. Vane J. R. , Mitchell J. A. , Appleton I. , Tomlinson A. , Bishop-Bailey D. , Croxtall J. , Willoughby D. A. (1994) Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc. Natl. Acad. Sci. U. S. A. 91, 2046–2050 Crossref Medline
    • 42. Kwon B. K. , Tetzlaff W. , Grauer J. N. , Beiner J. , Vaccaro A. R. (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 4, 451–464 Crossref Medline
    • 43. Bracken M. B. (1990) Methylprednisolone in the management of acute spinal cord injuries. Med. J. Aust. 153, 368 Medline
    • 44. Chvatal S. A. , Kim Y. T. , Bratt-Leal A. M. , Lee H. , Bellamkonda R. V. (2008) Spatial distribution and acute anti-inflammatory effects of methylprednisolone after sustained local delivery to the contused spinal cord. Biomaterials 29, 1967–1975 Crossref Medline
    • 45. Kimura Y. , Kimura H. (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J. 18, 1165–1167
    • 46. Goubern M. , Andriamihaja M. , Nubel T. , Blachier F. , Bouillaud F. (2007) Sulfide, the first inorganic substrate for human cells. FASEB J. 21, 1699–1706
    • 47. Kimura Y. , Goto Y. , Kimura H. (2010) Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal. 12, 1–13 Crossref Medline
    • 48. Elrod J. W. , Calvert J. W. , Morrison J. , Doeller J. E. , Kraus D. W. , Tao L. , Jiao X. , Scalia R. , Kiss L. , Szabo C. , Kimura H. , Chow C. W. , Lefer D. J. (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc. Natl. Acad. Sci. U. S. A. 104, 15560–15565 Crossref Medline
    • 49. Li L. , Salto-Tellez M. , Tan C. H. , Whiteman M. , Moore P. K. (2009) GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic. Biol. Med. 47, 103–113 Crossref Medline
    • 50. Blight A. R. (1992) Macrophages and inflammatory damage in spinal cord injury. J. Neurotrauma 9(Suppl. 1), S83–S91 Medline
    • 51. Gomes-Leal W. , Corkill D. J. , Picanco-Diniz C. W. (2005) Systematic analysis of axonal damage and inflammatory response in different white matter tracts of acutely injured rat spinal cord. Brain Res. 1066, 57–70 Crossref Medline
    • 52. La Rosa G. , Cardali S. , Genovese T. , Conti A. , Di Paola R. , La Torre D. , Cacciola F. , Cuzzocrea S. (2004) Inhibition of the nuclear factor-kappaB activation with pyrrolidine dithiocarbamate attenuating inflammation and oxidative stress after experimental spinal cord trauma in rats. J. Neurosurg. 1, 311–321
    • 53. Verma I. M. (2004) Nuclear factor (NF)-kappaB proteins: therapeutic targets. Ann. Rheum. Dis. 63(Suppl 2), ii57–ii61 Crossref Medline
    • 54. Matsuyama Y. , Sato K. , Kamiya M. , Yano J. , Iwata H. , Isobe K. (1998) Nitric oxide: a possible etiologic factor in spinal cord cavitation. J. Spinal Disorders 11, 248–252 Crossref Medline
    • 55. Liu K. L. , Chen H. W. , Wang R. Y. , Lei Y. P. , Sheen L. Y. , Lii C. K. (2006) DATS reduces LPS-induced iNOS expression, NO production, oxidative stress, and NF-kappaB activation in RAW 264.7 macrophages. J. Agric. Food Chem. 54, 3472–3478 Crossref Medline
    • 56. Genovese T. , Mazzon E. , Mariotto S. , Menegazzi M. , Cardali S. , Conti A. , Suzuki H. , Bramanti P. , Cuzzocrea S. (2006) Modulation of nitric oxide homeostasis in a mouse model of spinal cord injury. J. Neurosurg. 4, 145–153
    • 57. Bao F. , Liu D. (2003) Peroxynitrite generated in the rat spinal cord induces apoptotic cell death and activates caspase-3. Neuroscience 116, 59–70 Crossref Medline
    • 58. Whiteman M. , Armstrong J. S. , Chu S. H. , Jian-Ling S. , Wong B. S. , Cheung N. S. , Halliwell B. , Moore P. K. (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J. Neurochem. 90, 765–768 Crossref Medline
    • 59. Mattson M. P. (2000) Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120–129 Crossref Medline
    • 60. Emery E. , Aldana P. , Bunge M. B. , Puckett W. , Srinivasan A. , Keane R. W. , Bethea J. , Levi A. D. (1998) Apoptosis after traumatic human spinal cord injury. J. Neurosurg. 89, 911–920 Crossref Medline
    • 61. Wallace JL , Cirino G , Santagada V , Caliendo G. (2008). Hydrogen sulfide derivatives of nonsteroidal anti-inflammatory drugs. U.S. Patent Application No. WO/2008/009127
    www.pharmacy24.com.ua

    силденафил инструкция по применению цена

    дождеватели hunter